Санкт-Петербургский государственный университет
Информационных технологий, механики и оптики,
197101, Санкт-Петербург, Кронверкский проспект, 49
Тел/Факс (812) 3154071, alex@dmitriyev.ru
Резюме: Описан эксперимент по измерению ускорения свободного падения закрытого контейнера с помещенным внутри него ротором механического гироскопа с горизонтальной осью вращения. При угловой скорости вращения 20 000 об/мин наблюдалось увеличение ускорения свободного падения контейнера величиной см/с2.
Лабораторным взвешиваниям роторов механических гироскопов посвящено множество работ [1,2]. Такие измерения обычно проводились с целью экспериментальной проверки принципа эквивалентности, либо различных гравитоэлектрических (гравитомагнитных) моделей. В большинстве случаев, в этих экспериментах ось ротора ориентировалась вертикально и, в целом, положительный эффект отсутствовал. В нашей работе [3] приведены результаты точного взвешивания двух соосных роторов с горизонтальной осью и с нулевым суммарным моментом


В описываемом эксперименте измерялось ускорение свободного падения контейнера с размещенными внутри него роторами двух, расположенных соосно, механических гироскопов; устройство и характеристики контейнера приведены в [3]. На контейнере закреплен компактный высокостабильный генератор импульсов, подключенный к двум разноцветным светодиодам, расположенным вдоль траектории падения контейнера. Расстояние между центрами диафрагм, установленных перед светодиодами,



где


Пример измеренных значений ускорения свободного падения контейнера в состояниях (1)




Рис. Пример экспериментальной зависимости ускорения свободного падения контейнера от состояния вращения ротора. Измерения 1-4 – ротор неподвижен; 5-10 – ротор вращается с максимальной угловой скоростью; 12-16 – ротор неподвижен (после выбегания).
Максимальная угловая скорость вращения ротора









Причиной заметного расхождения измеренного абсолютного значения ускорения





При горизонтальной ориентации оси вращения ротора каждая из его частиц одновременно участвует в двух линейных колебаниях в горизонтальной и вертикальной плоскостях. При этом ускорения частиц при их вертикальных колебаниях описываются бесконечным набором производных по времени от линейного смещения. Как отмечалось в [4,5] в этих условиях можно ожидать проявления “неклассических” свойств гравитации, о которых упоминал еще Д. Менделеев [6]. Свободное падение колеблющейся вдоль вертикали массы физически принципиально отличается от кругового (орбитального) движения такой массы. Поэтому полученный нами результат не противоречит результатам точных измерений прецессии гироскопа на околоземной орбите.
Дальнейшие экспериментальные исследования свободного падения вращающихся (колеблющихся в вертикальной плоскости) масс с применением высокоточной, например, интерферометрической измерительной техники будут способствовать более глубокому пониманию сложных явлений гравитации и инерции.
Литература
J. E. Faller et al., Phys. Rev. Lett. 64, 825, (1990); T. J. Quinn and A. Picard, Nature (London), 343, 732 (1990); J. M. Nitschke and P. A. Wilmarth, Phys. Rev. Lett. 64, 2115 (1990).
J. Luo et al., Phys. Rev. D, 65, 042005 (2002).
A. L. Dmitriev and V. S. Snegov, Measuring Techniques, 44, 831 (2001).
A. L. Dmitriev, E. M. Nikushchenko, V. S. Snegov, Measurement Techniques, 46, 115 (2003).
A. L. Dmitriev, AIP Conf. Proc. 969, 1163 (2008).
Д. И. Менделеев, Сочинения, том 22, изд. АН СССР (1950).
Взято с http://bourabai.kz/aldmitriev/gyros.htm